Magnetism in clusters of non-magnetic elements: Pd, Rh, and Ru

Magnetism in clusters of non-magnetic elements

V. Kumar^{1,2,a} and Y. Kawazoe¹

 1 Institute for Materials Research, Tohoku University, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Japan

 $^2\,$ Dr. Vijay Kumar Foundation, 45 Bazaar Street, K.K. Nagar (West), Chennai 600 078, India

Received 10 September 2002

Published online 3 July 2003 – © EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. We have carried out *ab initio* calculations on clusters of Pd with 2–23, 55, and 147 atoms using ultrasoft pseudopotential plane wave method and spin-polarized generalized gradient approximation for the exchange-correlation energy. It is found that these clusters have an icosahedral growth and size dependent oscillatory magnetic moments. Atomically closed shell 13, 55, and 147 atom clusters have large moments of 8, 26, and 60 μ_B , respectively. But cubic Pd₅₅ has a small moment of 10 μ_B only. This shows the importance of the icosahedral structure in the development of magnetism in Pd clusters. The magnetic energy is, however, small and the moments get quenched by H adsorption. Similar studies have been carried out on Rh and Ru clusters. In the atom these have large moments as compared to zero for Pd and therefore, the moments on clusters are also large. However, the moments decrease rapidly as the size grows.

PACS. 36.40.Cg Electronic and magnetic properties of clusters – 71.15.Nc Total energy and cohesive energy calculations

1 Introduction

The study of magnetism in clusters of 4d elements, Ru, Rh, and Pd has attracted much attention [1] as in bulk these are non-magnetic. These metals are used as catalysts but the size dependence of the properties of their clusters as well as the changes due to adsorption are not well understood. In bulk, Pd is close to fulfilling the Stoner criterion of magnetism with high paramagnetic susceptibility and only 6% lattice expansion induces bulk ferromagnetism in it [2]. Also it is now well-known that small clusters such as those of 3d magnetic elements, Fe, Co, and Ni show enhanced moments [3] due to narrow band widths that arise from a lower mean coordination in clusters as compared to bulk and the increased localization of electrons. Another important factor that makes clusters different from bulk is the possibility of non-crystallographic icosahedral (i) or decahedral (d) structures. The high symmetry of i clusters could have important consequences for magnetism. The different bond lengths in clusters in the interior and near the surface of a cluster could show interesting layer dependent variation in magnetic moments in such clusters.

Pd atom has a closed shell $4d^{10}5s^0$ electronic configuration while Rh and Ru have open 4d shell with magnetic moments of 3 and $4 \mu_B$, respectively. However, all are non-

magnetic in bulk. Therefore, the approach to bulk behavior is likely to be different for Pd as compared to Rh and Ru. Aggregation of atoms should lead to delocalization of electrons. For Pd, one would, therefore, expect a depletion of the 4d states that could initially give rise to magnetism in clusters. On the other hand, the delocalization of electrons in Rh and Ru should lead to lowering of the moments as compared to atom. The closed shell behavior of Pd atom also leads to weak bonding in its small clusters. However, Rh and Ru clusters are expected to be quite reactive. Experiments have given conflicting results as far as magnetism in Pd clusters is concerned. Early Stern-Gerlach experiments [4] showed zero magnetic moments in Pd clusters with temperatures in the range of 60 K or above. Photoemission studies [5] suggested Ni-like magnetic behavior for Pd_N with N = 3-6, whereas non-magnetic Pt-like for N > 15. Measurements at 1.8 K in the range of 50-70 Å particle size, however, reported [6] magnetic moment of $0.23 \pm 0.19 \ \mu_B$ per surface Pd atom. For Rh clusters, giant magnetic moments with ferromagnetic ordering were reported [4]. Subsequent studies showed large moments of about 1 μ_B /atom in small clusters which decrease towards the zero value of bulk as the size increases. For Ru clusters the moments have been found to be close to zero.

Theoretical studies [7] on Pd_{13} using the local spin density approximation showed an i isomer to be more favorable than cubic (c) isomer with a magnetic moment

^a e-mail: kumar@imr.edu

of 0.12 μ_B per surface atom and 0.43 μ_B at the central atom. A self-consistent tight-binding calculation [8] with N = 2-201 showed either non-magnetic or only weak magnetic behavior, keeping the symmetries such as equilateral triangle, tetrahedron, octahedron etc. of the clusters. In another related study [9], the clusters were relaxed, but only the 4d electrons were considered. First principles calculations [10] on small Pd clusters with N = 2-7 and 13 gave significant moments. For Rh_{13} and Ru_{13} , i structures were reported [7] to have lower energy than a cuboctahedron with a giant magnetic moment of 21 μ_B on Rh₁₃ with an antiferromagnetic coupling between the spins on the central and the vertex atoms. A similar behavior was obtained for Ru_{13} with slightly lower magnetic moments. These values are significantly higher than obtained experimentally. In a few other studies [11, 12] on Rh clusters with up to 13 atoms, i clusters or fragments were found to be of lowest energy. On the other hand Piveteau et al. [13] obtained fcc structure to be favorable for Rh_{13} and Ru_{13} . Li et al. [14] studied selected clusters having up to 43 atoms with fixed symmetries. Here we report results of ab initio calculations on the magnetic behavior of Pd, Rh, and Ru clusters having up to 147 atoms. Preliminary results are also reported on the effect of H adsorption on the magnetic behavior of clusters. Results of magnetism in Pd clusters have been presented in more detail in reference [15].

2 Computational approach

We use ultrasoft pseudopotential plane wave method [16] with a cut-off of 14.63, 15.11 and 14.96 Ry to expand the wave functions for Pd, Rh, and Ru, respectively. A normconserving pseudopotential is used for H with a cut-off of 25.68 Ry for the plane waves. The clusters are placed in a simple cubic supercell of side up to 30 Å. For such large cells the Brillouin zone integrations are carried out using only the Γ point. The exchange-correlation energy is calculated within the spin-polarized generalized gradient approximation (GGA) [17]. Selected structures are optimized without any symmetry constraint using the conjugate gradient method. For a dimer of Pd, we obtain a magnetic moment of 2 μ_B and the binding energy (BE) to be only 0.611 eV/atom. However, the bonding is not Van der Waals type as there is a contraction in the bond length (2.48 Å) when compared with the calculated bulk value of 2.8 Å. The highest occupied-lowest unoccupied molecular orbital (HOMO-LUMO) gap for the dimer is small (0.34 eV) and therefore, aggregation is likely to be favored. Rh and Ru dimers each has a magnetic moment of 4 μ_B that agrees with earlier calculations on Rh [11]. The bond length of Rh_2 is 2.2 Å which compares well with the experimental value of 2.28 Å [18]. Ru_2 has the bond length of 2.04 Å.

3 Results

The BEs and magnetic moments of the lowest energy structures are shown in Figure 1. Our results [15] on Pd

Fig. 1. (a) Binding energy per atom and (b) magnetic moment in X_N , X = Pd, Rh, and Ru, clusters. The numbers show the size of the clusters. The points are connected to aid the eye.

clusters with $N \leq 7$ and 13 are similar to those in [10] within GGA. Clusters with N = 3-5 are triangle, tetrahedron and trigonal bipyramid, each with 2 μ_B magnetic moment. Pd_6 is an octahedron and it is non-magnetic. A tetrahedral structure changes to a distorted prism and lies 0.331 eV higher in energy with a magnetic moment of 2 μ_B . Pd₇ has a pentagonal bipyramid (PBP) structure with 2 μ_B magnetic moment. A capped prism and a capped octahedron lie only 0.063 and 0.051 eV higher in energy, respectively and have zero magnetic moment. In experiments, all these isomers are likely to be present and lead to an underestimation of the moment on this cluster. Pd₈ has a D_{2d} type structure that is 0.219 eV lower in energy than a capped PBP. Both have 2 μ_B magnetic moment. For other clusters, i isomers or fragments of an icosahedron have lower energies than a few other structures we have studied. The energy differences between the isomers are generally small.

For Pd₉, capping of adjacent faces on the same side of a PBP is most favorable. A tricapped prism lies 0.241 eV higher in energy while another isomer with capping of two adjacent faces on opposite sides of the basal plane of a PBP lies 0.285 eV higher. The latter was obtained from optimization of a capped tetragonal antiprism. All these isomers have 4 μ_B magnetic moment. Pd₁₀ is a tricapped (adjacent faces on the same side) PBP with 6 μ_B magnetic moment. A bicapped tetragonal antiprism converges to an isomer with two interlocked PBPs. It lies only 0.062 eV higher in energy and has 4 μ_B magnetic moment. It is likely to be abundant in experiments and again lead to an underestimation of the moments. On the other hand, a tetracapped prism lies 0.505 eV higher in energy and has 4 μ_B magnetic moment. Pd₁₁ and Pd₁₂ are incomplete icosahedra each with 6 μ_B magnetic moment. An i isomer with 8 μ_B magnetic moment is lowest in energy for Pd₁₃ in agreement with an earlier GGA study [11], but it is different from the result of 2 μ_B [8] using a tight binding method and also by Reddy et al. [7] within LDA. The LDA BE in the latter paper was also low (1.56 eV/atom)as compared to our GGA value of 2.322 eV. Experimental studies [4] have reported zero moment on Pd_{13} . This could be due to the relatively high temperatures (60 to 380 K)of the clusters. An upper limit for the magnetic moments in Pd₁₃ was suggested to be 0.4 μ_B /atom which is close to $0.61 \ \mu_B$ /atom we have obtained. A c isomer is also found to have 8 μ_B magnetic moment, but it transforms to the i isomer upon relaxation keeping the same moment. A d isomer with 8 μ_B magnetic moment lies 0.312 eV higher in energy. There is a large gap of 1.639 eV in the upspin electronic spectrum of the i isomer and it plays an important role in the lowest spin state of this cluster.

 Pd_{14} is a capping of i-Pd₁₃ on a 3-fold site while for Pd_{15} bicapping on adjacent faces is favored. Both of these have 8 μ_B magnetic moment. A capped hexagonal antiprism, often a low lying isomer for 15 atom metal clusters, has 6 μ_B moment and lies 0.247 eV higher in energy. Also a body centered c structure with 8 μ_B magnetic moment lies 0.231 eV higher in energy. Therefore, our results show that the i growth is most favored in Pd clusters. Continued capping of the i isomer up to N = 19 leads to a double icosahedron. All these clusters with N = 16 to 19 have 6 μ_B magnetic moment. Further capping leads to three interpenetrating icosahedra for Pd_{23} . The magnetic moments for 20 to 23 atom clusters are 8, 4, 6, and 6 μ_B , respectively. The surface atoms in Pd₂₃ have $0.23-0.32 \mu_B$ magnetic moment while the 3 central atoms, 0.19 μ_B . The moment on each atom is calculated by using Voronoi construction and by integrating the polarization.

For N = 55 and 147, spin unpolarized calculations gave the Mackay icosahedra to be of lowest energy with the c isomers lying, respectively, 0.212 and 0.63 eV higher. The d isomers lie 0.628 and 0.869 eV higher in energy. Spin polarized calculations further lowered the energies of i-Pd₅₅ and i-Pd₁₄₇ by 0.465 and 1.847 eV with a total moment of 26 and 60 μ_B , respectively. The c-Pd₅₅ isomer has a significantly lower magnetic moment of 10 μ_B . Therefore, the i structure plays an important role in the development of magnetism in Pd clusters. Other spin states with 14, 18, 24 and 34 μ_B moments lie, respectively, 0.124, 0.121, 0.015, and 0.95 eV higher in energy. The energy differences for the 14 and 18 μ_B states are quite small and could lead to lower spin isomers to be abundant in experimental conditions of finite temperatures. On the other hand, it costs significantly higher energy to create a higher moment isomer. For Pd_{147} , the gap in the up-spin spectrum becomes quite small and therefore, the energy differences between

the different spin isomers are also likely to be quite small. Therefore, a proper understanding of the magnetic behavior may need quite low temperatures. The BE of Pd clusters increases monotonically towards the bulk value with a weak bonding in the small region. For large clusters, it shows nearly a linear behavior that extrapolates to the calculated bulk value closely.

The above results show that the magnetic moment per atom in Pd clusters varies in an oscillatory manner with size (Fig. 1b). The increase in the magnetic moment for i-Pd₅₅ as compared to i-Pd₂₃ is contrary to naive expectation of smaller moments for larger clusters. However, the moment per atom is smaller than the value for $i-Pd_{13}$. The moment of $i-Pd_{147}$ is also large, but again smaller than the value for i-Pd₅₅. Therefore, the atomically closed shell clusters tend to have higher magnetic moments which decrease slowly with increasing size. The icosahedral structure is the highest symmetry structure possible besides small distortions and would give rise to high density of states (DOS) at the HOMO and this could facilitate the development of ferromagnetism. Also we find that in i isomers, the inner bonds are slightly contracted while the bonds at the surface are elongated. From the tendency of Pd to develop magnetic moments upon expansion, one could expect development of magnetic moments at the surface of Pd clusters. The spin polarizations of the charge densities in 13, 55, and 147 atom clusters was found [15] to be nearly uniform. The slow decrease in the moments with size suggests that larger i clusters will continue to have significant moments particularly in the surface region. This could support the experimental report [6] of surface magnetism in large Pd clusters at low temperatures. We also studied the effect of H adsorption on magnetism of Pd clusters by considering one H on a 3-fold site on i-Pd₁₃. It reduces the moment by 1 μ_B . The Pd-H bond lengths are 1.82 and 1.83 Å whereas the BE of H on i-Pd₁₃ is 2.969 eV. Adsorption on a bridge site is 0.3 eV less favorable. Adsorption of eight H atoms in a cubic arrangement around $i-Pd_{13}$ quenches all the moments [15]. Therefore, impurities could be another source that can reduce the magnetic moments. The adsorption energy per H is nearly the same as for one H. There is a HOMO-LUMO gap of 0.42 eV.

In both Pd_{55} and Pd_{147} , there is a compression of the inner atomic shells as compared to the calculated bulk nearest neighbor distance of 2.8 Å. A similar behavior was also found in Sr clusters [19] as a result of the optimization of strain between the surface atoms which are stretched due to the i packing. The expanded bond lengths at the surface could also lead to the development of magnetic moments in deeper layers. We find moments at least in the first 3–4 surface layers where the effect of the surface is the maximum. For Sr clusters that have icosahedral growth, we [19] suggested a correlation between compressibility and i growth in clusters. This is further supported by our results. However, a smaller energy difference in the i and c isomers should lead to an early transition to the fcc structure, in accordance with the lower compressibility of Pd than Sr.

Similarly for Ru and Rh clusters we find i growth to be generally the most favorable. There is a large magnetic moment in small clusters, but it decreases rapidly to very small or zero value at the size of 147 atoms. Rh_{13} has a magnetic moment of 21 μ_B that is much higher than in the case of Pd_{13} . This value is close to the result of 22 μ_B obtained by Piveteau *et al.* [13] using the tight binding method with only d electrons. Lower magnetic moment states lie very close in energy. 19 μ_B state lies only 0.043 eV higher, while a 17 μ_B state lies only 0.021 eV higher in energy. An spin isomer with 15 μ_B magnetic moment lies 0.044 eV higher making the 15 and 19 μ_B spin isomers to be nearly degenerate. These magnetic moments are higher than the observed values. However, it is likely that low spin isomers would be abundant under experimental conditions of finite temperatures and lead to an effective underestimation of the moments. The c and d isomers have 19 and 5 μ_B moments, respectively and are nearly degenerate with about 0.5 eV higher energy than the i isomer. Therefore, i structures are important for high moments on these clusters also. The magnetic moment (25 μ_B) on i-Rh₅₅ is close to the value of i-Pd₅₅. However, a d isomer with 11 μ_B magnetic moment becomes 0.308 eV lower in energy. For i-Rh₁₄₇, the magnetic moment becomes only 5 μ_B as compared to 60 μ_B for $i-Pd_{147}$. Therefore, there is a tendency for states of low magnetic moments to be of lowest energy. A similar behavior is obtained for Ru clusters with 12 and 14 μ_B moments on i-Ru₁₃ and i-Ru₅₅, respectively. However, a c isomer of Ru₁₃ with 10 μ_B magnetic moment lies significantly lower in energy, but i-Ru₅₅ has the lowest energy. Piveteau et al. [13] also obtained fcc structure to be lower in energy than the i structure but with a magnetic moment of 24 μ_B using a simplified tight binding model. In our calculations such a high spin isomer lies about 3 eV higher in energy. The magnetic isomer (16 μ_B) of i-Ru₁₄₇ is only 0.115 eV lower in energy than the non-magnetic state. These results show that the delocalization of electrons is faster in Rh and Ru clusters as compared to Pd, leading to the disappearance of magnetism in these clusters faster (Fig. 1b). Though i structures are generally favored, there is a competition between the different structures and the magnetic moments in these clusters. A similar conclusion was obtained on Rh clusters using a simplified tight binding model [20]. A detailed report of these results and the effects of H interaction will be presented elsewhere [21].

4 Summary

In summary, we have presented results of *ab initio* calculations on the magnetic behavior of large Pd, Rh, and Ru clusters having up to 147 atoms. We find an oscillatory ferromagnetic behavior as a function of size and an i growth in Pd clusters. The i symmetry of the atomically closed shell 13, 55, and 147 atom clusters leads to high magnetic moments that decrease slowly with size for Pd. For Rh and Ru clusters, though i structures are generally preferred, there is a competition between the structure and the magnetic moment. There is a tendency for rapid delocalization of electrons and consequently a quite rapid decrease in the magnetic moments on their clusters. The magnetic moments are significant at least in the first 3-4 layers near the surface. The magnetic energy is generally small and even at liquid nitrogen temperature the moments can be significantly reduced or destroyed making their observation difficult in agreement with experimental results. Also it is found that H adsorption quenches the moments of Pd. Therefore, impurities could affect magnetic behavior significantly.

V.K. thankfully acknowledges the kind hospitality at the IMR and the staff of the Center for Computational Materials Science of IMR-Tohoku University for the use of the supercomputing facilities.

References

- For a recent review see for instance V. Kumar, K. Esfarjani, Y. Kawazoe, in *Clusters and Nanomaterials*, edited by Y. Kawazoe, T. Kondow, K. Ohno, Springer Series in Cluster Physics (Springer Verlag, Heidelberg, 2002), p. 9
- 2. V.L. Moruzzi, P.M. Marcus, Phys. Rev. B 39, 471 (1989)
- I.M.L. Billas, A. Chatelain, W.A. de Heer, Science 265, 1682 (1994)
- A.J. Cox, J.G. Louderback, L.A. Bloomfield, Phys. Rev. Lett. **71**, 923 (1993); A.J. Cox, J.G. Louderback, S.E. Apsel, L.A. Bloomfield, Phys. Rev. B **49**, 12295 (1994); D.C. Douglass, J.P. Bucher, L.A. Bloomfield, Phys. Rev. B **45**, 6341 (1992)
- G. Ganteför, W. Eberhardt, Phys. Rev. Lett. 76, 4975 (1996)
- T. Taniyama, E. Ohta, T. Sato, Europhys. Lett. 38, 195 (1997)
- B.V. Reddy, S.N. Khanna, B.I. Dunlap, Phys. Rev. Lett. 70, 3323 (1993)
- 8. C. Barreteau et al., Phys. Rev. B 61, 7781 (2000)
- R. Guirado-Lopez, M.C. Desjonqueres, D. Spanjaard, Phys. Rev. B 62, 13188 (2000)
- M. Moseler, H. Häkkinen, R.N. Barnett, U. Landman, Phys. Rev. Lett. 86, 2545 (2001)
- B.V. Reddy, S.K. Nayak, S.N. Khanna, B.K. Rao, P. Jena, Phys. Rev. B 59, 5214 (1999)
- Y. Jinlong, F. Toigo, W. Kelin, Phys. Rev. B 50, 7915 (1994)
- B. Piveteau, M.-C. Desjonqueres, A.M. Oles, D. Spanjaard, Phys. Rev. B 53, 9251 (1996)
- Z.-Q. Li, J.-Z. Yu, K. Ohno, Y. Kawazoe, J. Phys. Cond. Matt. 7, 47 (1995)
- 15. V. Kumar, Y. Kawazoe, Phys. Rev. B 66, 144413 (2002)
- G. Kresse, J. Furthmüller, Phys. Rev. B 55, 11169 (1996);
 D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)
- J.P. Perdew, in *Electronic Structure of Solids'91*, edited by P. Ziesche, H. Eschrig (Akademie Verlag, Berlin, 1991)
- K.A. Gingerich, D.L. Cocke, J. Chem. Soc. Chem. Commun. 1, 536 (1972)
- 19. V. Kumar, Y. Kawazoe, Phys. Rev. B 63, 075410 (2001)
- P. Villasenor Gonzalez, J. Dorantes Davila, H. Dreysse, G.M. Pastor, Phys. Rev. B 55, 15084 (1997)
- 21. V. Kumar, Y. kawazoe, to be published